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The use of smartphone applications (APP) for the purchase of services, such as food, flights
or household goods, is becoming an increasingly common practice. This practice generates
two- phase service systems composed of (i) an ordering phase operated by several servers
(under a dynamic vacation policy), and (ii) a following preparation phase. Upon arrival,
strategic customers can either join an observable first-stage queue and then continue to a
partially unobservable second-stage queue, or balk never to return. In contrast, APP users
register their order in advance, skip the first phase and join directly the second-stage
queue. Each server stationed at the first service stage takes a ‘vacation’ when a server-
dependent queue size drops below a given value. An individual strategic customer is con-
cerned only with his/her net utility, while a social customer is concerned with the overall
social welfare. Each type of customers follows a threshold-joining policy. However, contrary
to Naor's seminal model, we show that under such a scenario, the social joining threshold
is not always smaller than the individual one, and that several equilibrium thresholds may
exist. We analyze the profit optimization problem of the service system’s manager when a
price discount is offered to potential APP users and show that it may increase manager’s
profit, reduce customers’ sojourn times, reduce the first-stage queue size, and reduce the
number of servers required to operate the first-stage queue. Numerical examples are pre-
sented.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Ordering goods or services via a website or smartphone application is becoming an increasingly common practice. Typi-
cal on-line purchases include fast food, flight tickets, clothing, household goods and a variety of other products and services.
Many retailers have chosen to integrate their conventional service operations with electronic service ordering, thus improv-
ing operational efficiency for both the retailer and the customers. Consequently, there is a growing focus on "Omni channel
retailing”, to such an extent that it has been characterized as the "future of shopping” in recent literature (see, e.g., [1-3]).
There is good evidence that the integration of service channels, where customers buy a product online and pick it up in
store (BOPS), results in higher sales (see, e.g., [4,5]). For additional related works on BOPS the reader is referred to [6-8].
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Many restaurants and coffee shops, such as McDonalds, KFC, Subway, Starbucks, and Aroma, have sought to realize the
power of the Internet by providing an online self-service facility. This is usually done by developing a mobile application that
allows customers to place an order and pay while using their mobile devices. In this way, customers can avoid the ordering
queue and need only wait in the restaurant for their order to be prepared. Baron et al. [9] studied a system that implements
such self-ordering technologies for ‘strategic customers’, i.e., customers who can choose between the two ordering channels
(online via the APP or offline in the store) and can set their own queue-size threshold for deciding whether or not to join
the queue. They showed that adding an online ordering option has the unexpected effect of lowering both the customers’
individual utility and the social welfare outcome (defined as the total utility for all customers from both channels). This
'paradox’ is explained by self-interested channel choices. The authors offered strategies to address the aggravating effects
of providing an additional channel. In a similar study, Gao and Su [10] modeled a restaurant service in which orders are
processed in two stages (ordering and then food preparation) as above. Customers can place orders through their own
digital devices and skip waiting in line for the first service stage. However, the customers are not strategic (i.e., they cannot
choose the ordering channel and they always enter the system without considering a queue-size joining threshold). The
authors concluded, among other findings, that both customer types (including those who do not use the digital technologies)
experience reduced waiting costs and that this generates increased demand.

In practice, not all customers are pleased with such an online self-order service. It requires an installation of an appro-
priate APP. As remarked by the Facebook's chief executive officer Mark Zuckerberg, “no one wants to have to install a new
app for every business or service that they want to interact with” (quoted in [10,11]). Moreover, there are customers who
have no access to the required digital device, e.g., a computer or a smartphone, and cannot use the self-order platform. It
follows that customers are generally of two kinds: those who do not use the self-order application (ordinary customers) and
those who are willing to use the application (APP customers). Upon arrival, ordinary customers decide whether to join the
queue or to balk. Thus, ordinary customers are called strategic, whereas APP customers, who place (and normally pay for)
their order on their way to the restaurant and always join the second-stage queue, are not. The number of APP customers
increased dramatically during the COVID-19 pandemic where in some businesses, especially in fast food shops, it became
the only possible way of ordering.

We note that, after placing their order, many customers (of both types) do not physically stand in line waiting for the
preparation of their order, but instead disperse and wait in different locations utilizing their time for other purposes. As
a result, when strategic customers make the join/balk decision with regard to the first-stage queue, they cannot see the
full length of the second-stage queue and make their decision based on: (i) the number of customers they see in the first
service stage, and (ii) their estimate of the number of customers in the second service stage (which is a function of the
number of customers seen in the first service stage). Moreover, a strategic customer has to take into account the number
of APP customers who may arrive after he/she joins the first-stage queue and may overtake him/her by joining the second
service-stage queue directly. These considerations have not been taken into account in previous research works reported in
the literature.

Another common practice exercised in restaurants is that cashiers do not constantly stand at their cash tills, but rather
leave their station when the queue size is relatively short and take a 'vacation’ in order to perform other restaurant duties.
Such a queue-dependent vacation policy was suggested by Yadin and Naor [12] and is now known as an N-policy (see [13-
21]). In many establishments, each cashier may adopt a different vacation policy, i.e., each cashier returns from the vacation
to his/her station only when the queue size reaches some predefined number for that particular cashier. Thus, the larger
the queue size, the more servers are assigned to the first service stage. Consequently, more customers are served per hour.
This feature of the servers' behavior makes the customers’ decision of whether to join or balk more complex since they
need to take account not only of the customers who are already present in the queue, but also of the possibility that future
customers may arrive and trigger an increase in the number of active servers, resulting in a reduction of their waiting time.

An additional consideration is that restaurant managers usually prefer customers to place their orders via the APP so that
queue sizes are reduced and servers are released for ancillary duties. To encourage this behavior, it is a common practice
of restaurants to offer a discount to those ordering via a digital application. Such price discrimination policies have been
widely investigated (see, e.g., [22-27]).

To summarize, when making a join/balk decision, a newly arriving strategic (NAS) customer’s action is based on: (i) the
number of customers seen in the first service stage; (ii) the estimated mean number of customers in the second service
stage (as a function of the observed queue size in the first stage); (iii) the mean number of future APP customers who will
join the second stage queue directly and will ‘overtake’ the NAS customer before he/she can join the second stage queue;
(iv) the mean number of strategic customers that will join the first stage queue after the NAS customer and may trigger
a faster rate of service; (v) the vacation policy adopted by servers, which is at the discretion of the manager; and (vi) the
existence and impact of any APP discount, which is also set by the manager.

These six facets of the join/balk decision are very common features of real-life consumer service systems. However, we
are not aware of any investigation that has examined the operation of all the above characteristics simultaneously. Hence,
the contribution of the current paper is to achieve the following specific outputs in the context of this multi-faceted two-
stage service system:

(i) Constructing the two-stage service system with a dynamic server vacation policy, as a QBD process, and developing
corresponding quantitative performance measures.
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Fig. 1. Transition-rate diagram. The horizontal axis depicts L, while the vertical axis depicts S.

(ii) Developing a methodology for determining equilibrium thresholds for joining/balking at stage one for two categories
of strategic customers: (a) those who take into account the sojourn time at the second stage when deciding whether
to join the first stage queue (far-sighted customers) and (b) those who do not take account of the second stage sojourn
time (myopic customers).

(iii) Examining the monetary increase associated with adopting a far-sighted approach.

(iv) Demonstrating that for individual customers, the number of equilibrium thresholds may exceed one.

(v) Demonstrating that the individual joining threshold is not always larger than the social joining threshold and con-
ducting a comparative study to illustrate cases in which the individual threshold is lower than the social one.

357



G. Hanukov and U. Yechiali Applied Mathematical Modelling 105 (2022) 355-374

(vi) Developing a method for calculating the optimal values of the APP discount and servers vacation policy.
(vii) Solving the overall service system problem (including the APP discount and servers
(viii) vacation policy) while determining the customers joining threshold.

2. The model and its formulation

We consider a service system in which the service to each individual customer consists of two consecutive stages as
discussed above. Each service stage is provided independently by a different team of servers and has a separate queue.
Customers go through the first stage (ordering/paying) either on-line by using an APP, or by physically queueing in the shop
to place their order. Whichever route is followed at the first stage, every joining customer joins the second-stage (order
preparation) queue. Thus, there are two customer types: (i) Strategic, who physically queue at both stages, and (ii) APP,
those who complete the first-stage service online, but physically join the queue at stage 2.

When a strategic customer arrives, sfhe joins the stage-1 queue only if fewer than n customers are present there (in-
cluding those who are being served). Otherwise, a strategic customer balks, leaving the outlet never to return. The joining
threshold, n, is determined in accordance with Naor’s model [28], as described in Section 3.1 bellow. An APP customer, hav-
ing completed stage 1 by APP, always joins the stage 2 queue on arrival and waits there until being served. Both strategic
and APP customers arrive according to independent Poisson processes, with rates A and «, respectively.

Note: although each of the variables and parameters used in the paper is defined and described when required, a com-
prehensive detailed list of notation appears in Appendix D.

The first service-stage is provided by C = 1 potential (statistically identical) independent parallel servers. Servers are
listed in the order m = 1, 2, 3, ..., C, while each server is associated with a queue size threshold kp, where 1 = ky < k; < k3
< .. < kc < n. As soon as the queue size falls below ki, server m = 1 goes on ‘vacation’ and returns immediately when the
number of customers increases back to ky. Similarly, server m goes on vacation when the number of customers falls short
of kym and returns immediately as the queue size reaches ky, again. It readily follows that k;;, = m. This operating procedure
describes, for example, the scheduling policy of a shop that employs C cashiers, each of whom may be on vacation, per-
forming other duties when the queue length justifies such action. The second-stage queue is assumed to be serviced by a
single server, although in practice the ‘server’ may comprise a coordinated team that jointly prepares the order. The service
duration at each stage is exponentially distributed with parameter p in the first stage, and parameter 8 in the second. The
two processes are independent.

The system is formulated as a 2-dimensional quasi-birth-and-death (QBD) process. At time ¢, let L and S; denote the
number of customers in the first and in the second stage, respectively. {L;,S;} defines the state space of the queueing system
at time t. Let L = lim¢ — «Lr and S = lim; — «S;. Define the steady-state joint probability distribution function of the two-
dimensional Markovian process by p; j=Pr(L=1i, S=j),i=0,1,2, .., n;j=0, 1, 2, .. The transition-rate diagram for the
queueing system's states is depicted in Fig. 1.

In order to construct the infinitesimal generator matrix, Q, of the corresponding QBD process, the system states are
arranged in the following lexicographical order: {(0, 0), (1, 0), ..., (n, 0); (0, 1), (1, 1), ..., (n, 1); ...; (0, j), (1, j), wo, (11, J)5 -},
i=012, ..

Then,

B A O 0--
A, Al Ap O -..
Q=10 A A A :

where the matrices B, Ag, Ay and A, are each of order (n + 1) x (n + 1) and are given below

—(A+o) A 0 0 0 0 \
0 —(Ato+p) A 0 0 0
0 0 “ta+p) 0 0 0
A 0 0

B= 0 0 0 —Oo+a+2u) 0 0 ,
A 0
0 0 0 0 —(h+a+3p) . 0
: : : . )

0 0 0 0 0 —(o +Cp)
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a 0 0 0 0 0\
mw o oa 0 0 0
0 p o 0 0 0
Ay = 0 0 2n o o ... 0
0 0 0 3« 0
0 0 - 0 - 0 cn o
B0 0 0
0 B 0 0
Ay = . :
0 0 g0
o0 -~ 0 §B
—(A+a+f) A 0 0 0 0
0 —(At+a+u+p) A 0 0 0
0 0 “Aratptp) 0 0 0
by 0 0
A= 0 0 0 —ta42u+py 0 0
A 0
0 0 0 0 —(A+a+3u+h) 0
: : : . A
0 0 0 0 0 —(@+Ci+B)

For each row j (j = 012,...) in Fig. 1, define the corresponding (n + 1)-dimensional probability vector as pj=
(Pajs P1,js P2,js -+ Pp,j)- The entire probability vector of all system states is p= (Pp. P1, P2, --), and let &= (1,1,1,. )T be
a corresponding infinite dimensional column vector with all its entries equal to one. The system’s balance equations are
given by

pRQ=0, p-e=1.

Theorem 1. Let pm = A/mu, kg = 0 and k¢, 1 — 1 = n. Then, the stability condition of the queueing system is given by

-1
km+1 ki, ki 1 kﬂ'H—l Km
Pr p mkn- P = o
o+ 1+ . 1
,umzl m aka+1 —ka ( Pm — ) ( Z aka+l —ka ( Pm—1 )) <P M

Proof. See Appendix A.
For example, for n =4, C = 2 and ky = 3, the stability condition is given by

224 143+ 402 + 4a P
A 2030 +4X2p? Al - 4pa =P

Note that, in this case, when A is larger than Ci = 2, the two servers in the first stage are almost always busy so
that the effective arrival rate to the unbounded second stage is « + 2/¢. Indeed, the left-hand side of the stability condition
(2) approaches @ + 2 as A approaches infinity, and this rate should be smaller than £, the service rate in that stage.

The steady-state probabilities of the queueing system are calculated (see Neuts, [29]) from p; = PoRi,j=0,1,2, .. where

R (the so-called ‘rate matrix’) is the matrix of size (n + 1) x (n + 1) that satisfies Ay + RA; + R?A, = 0. In most cases, the
matrix R is calculated numerically via successive substitution (see, e.g., Harchol-Balter, [30]). Recently, Hanukov and Yechiali
[31] showed that in many cases, when the three matrices Ay, A; and A, are all upper-triangular, or are all lower-triangular,
the entries of R can be calculated explicitly, and that the stability condition can be easily obtained. Unfortunately, this is not
the case in the current model. The (n + 1)-dimensional probability vector py is calculated as follows: (i) the first vector
equation extracted from pQ =0 is poB+ 1Az = Po[B + RA;] =0 (since py = PgR). (ii) furthermore, since p; = poR/, j = 0,
1, 2, ..., the normalization equation p-é&=1 translates into Z}’io Pj€ni1 = Zj-’io PoRi€,.1 = Poll —R]"'€,,1 = 1, where here

o+ (2)
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gml =(1,1,.., l)T is an (n + 1)-dimensional column vector of ones. Using the last linear equation (involving the n + 1
probabilities pgg, p10.-Pno) together with n equations from py[B + RA;] = 0 the vector Py is uniquely calculated.

Let E[L] be the mean number of strategic customers in the first stage (note that all customers in the first stage are
strategic), and let E[S] be the mean number of customers in the second stage. Let E[S*"] and E[S%P], respectively, be the
mean number of strategic and of APP customers in the second stage, i.e., E[S] = E[S""] + E[S*P]. Let E[D] be the mean
sojourn time of a strategic customer in the first stage. Let E[T*"] and E[T%P], respectively, be the mean sojourn time of a
strategic and of an APP customer in the second stage. Let E[W] = E[D] + E[T*"] be the mean total sojourn time in the system
(in both stages) of a strategic customer. Let E[V] be the mean number of first-stage servers on vacation.

In what follows we use the notation p,‘jzz,ﬂzopi!j,j =012, .,and p;, = Z‘}“:'O Pijyi=0 12 ., nLet 7=
(0,1,2,....,m)T. Then, the mean number of strategic customers in the first stage is given by

n o0 o0
L =Y ipie =Y (5;-0) = fo | S R |0 = poll - RI7'™.
i=1 j=0 i=0
By Little’s law the mean sojourn time of a strategic customer in the first stage is E[D] = E[L]/Ag where Agy is
the strategic customers' effective arrival rate, calculated as follows. Let o= (1,1,.,1,1,0)T. Then, Aeff:AZ?:’(]] pi.=
A Z}io(ﬁj -i1) = Apg[l — R]~1d. The mean number of customers in the second stage is given by

EIST = jpey =S 0B Gt = 3 (o) ener = Bo 3 RT |ener = BoRIT — RI 21,
=1 =1 =1 =1

An APP customer who arrives into state (i, j) stays in the second stage for j + 1 service durations. Thus, an APP customer’s
mean sojourn time in the system is given by

E[TP] =3 (j+ DA 'paj=B" D I+ 1Pj- &1 = B Poll — R Een.
j=0 j=0

Using Little’s law, the mean number of APP customers in the second stage is calculated as E[S®™P] = «E[T9P]. Then,
E[S*"] = E[S] — E[S®PP] and E[T"""] = E[S""][A .

Let W be an (n + 1)-dimensional column vector defined as follows: for a given m, m = 0, 1, 2, ..., C, the i" term of W,
denoted by W[i], is W[i] =C —m for all i = km,km + 1, km + 2, ..., Ky ;. 1 — 1. W[i] indicates the number of servers on vacation
in the first stage queue. Thus, the mean number of servers on vacation is given by

EVI =" (5 W) = po 2RI |w = poll - RI"'w.
j=0 i=0

3. The strategic customer problem

Consider, for example, a coffee shop where customers stand in line to place their order at the first stage, and then, instead
of physically waiting in line for the completion of their order, they seat at a nearby table or outside the coffee shop. Taking
such behavior into account, it is assumed that (i) an NAS customer can see the actual number of customers present in the
first-stage queue, but (ii) does not know the number of customers in the second-stage queue (i.e., the second-stage queue
is unobservable). Thus, based only on the available information on the queue length in the first stage, a strategic customer
has to decide whether to join the queue or to balk. Moreover, the sojourn cost-rate in the first stage is not necessarily the
same as the one in the second stage.

We distinguish between two types of strategic customers: (i) type M, myopic customers, each considers only the mean
sojourn time in the first-stage queue; and (ii) type F, far-sighted customers, who consider the cumulative mean sojourn time
in both stages. We analyze two kinds of threshold joining policies: (i) individual, where each individual customer (M or F)
aims at maximizing his/her own utility (called type MI or type FI, respectively); or (ii) social threshold policy, where each
type (M or F) aims at maximizing the overall social welfare (type MS or type FS, respectively). Fig. 2 depicts all possible
types of strategic customers. In what follows we derive the equilibrium threshold for each type of strategic customer (see
also Section 3.1). The concept of equilibrium follows Naor's model, namely, a threshold joining policy is a number n such that
an NAS customer joins the queue only if its size is smaller than n. Thus, we have an infinite number of players (customers),
each chooses from an infinite set of strategies (n = 1, 2, 3, ..). The players are symmetric regarding their decisions, so
that in equilibrium all customers behave according to the same threshold n. The threshold n dictates the servers’ dynamic
vacation policy which has to be considered as well when a customer makes his/her individual decision. Moreover, a social
customer is also affected by other players threshold decision (1) since the overall welfare depends on it. Similar to the basic
assumptions listed in Hassin and Haviv's book (|32] page 22) for models similar to ours, the main assumptions in this paper
are: (i) a customer’s benefit from completed service is r; (ii) the cost rate to a customer from staying in the system is hy for
stage 1 and h, for stage 2; (iii) customers are risk neutral, that is, they maximize the expected value of their net benefit;
(iv) utility function of individual customers are identical; (v) a decision to join is irrevocable and reneging is not allowed.
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Strategic
customer

Type M
Myopic
customer

Far-sighted
customer,

Type FS§

Far-sighted customer,
who maximizes
social profit

Type MS

Far-sighted customer Myopic customer
who maximizes who maximizes
individual profit social profit

Myopie customer
who maximizes

Fig. 2. Summary of strategic customer types.

3.1. Myopic individual (Ml) customer

Let r be the customer’s reward for obtaining the service and let hy be the customer’s sojourn cost-rate in the first stage.
In the traditional M/M/1 queue, an NAS customer who sees y customers in the queue will spend y + 1 full-service durations,
independent of the number of customers who will arrive after him/her. Thus, the NAS customer will join if r — hy(y + 1)/
> 0. This allows an equilibrium threshold, n, to be derived using n = 1 + max (y|r — hy(y + 1)/ > 0) = [rpe/hy] (Naor,
[28]). Furthermore, Yechiali [33,34] considered the GI/M/1 and GI/M/s models and showed that among all randomized join-
ing policies the optimal one is a non-randomized policy (i.e., state-depending joining probabilities are either O or 1), and
among all non-randomized policies, the threshold one is optimal. Thus, in what follows we consider threshold policies for
joining/balking. In the current case, however, it is required to take into consideration the fact that the number of active
servers is dynamic, depending on the dynamically changing number of customers in the system. Thus, as noted in the in-
troduction, the mean sojourn time of a customer may be affected by the number of customers who will join the queue
after his/her joining instant. Specifically, the larger the queue behind a customer, the more servers will return from their
vacation, resulting in a higher overall service rate and a lower customer’s sojourn time. Another consideration to be taken
is that the arrival rate behind a customer depends on the balking threshold. Thus, let E[D|y, n] be the mean sojourn time in
the first stage for an NAS customer who sees y customers in the system and for a given, already known, threshold n. Then,
the utility of a strategic type MI customer is given by

Zy=1—ME[Dly.n] (3)
A threshold, n, is an equilibrium threshold if, for that n, the following two conditions hold:

(iyr —hiE[D|y,n] = 0 for all y < n, (4)

(iilyr — W E[D]y,n] <0 for y =n, (5)

In order to calculate E[D|y, n], we formulate a sub-system for an NAS customer. The sub-system is described by states (L,
H), where L is the number of customers in the first stage, and H is the position of the customer in the queue. The evolution
of the sub-system starts with the customer’s arrival and terminates when this customer reaches the service station (H = 0).
The transition rate diagram of the sub-system is depicted in Fig. 3.

The diagram is constructed as follows: each service completion reduces the number of customers (L) by one, and lower
the position of the customer (H) by one (that is, a customer advances one position in the queue). Each customer’s arrival in-
creases L by one and has no effect on the customer’s position H. The exceptions are the states at which L =k or L =k, _ 4.
When a service completion occurs at a state L = kj,, one server leaves the system for vacation, and thus no change in the
customer’s position occurs. On the other hand, when a customer arrival occurs at a state where L = k;; _ 1, one server
returns to the system from vacation, and thus the customer’s position in the queue is reduced by one.

While removing the expectation notation, let D(L, H) be the mean total waiting time of a customer starting from state (L,
H) until the start of his/her service. For simplicity of presentation, let m(L) be the corresponding m for a given L, according
to the servers’ vacation policies. Each D(L, H), for all L and H, can be recursively calculated by the following procedure:

Procedure 1. Calculation of D(L, H) for all L and H.

(i)D(L.l):&, L=kc+1.kc+2,....n
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Fig. 3. The sub-system’s transition rate diagram.
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Table 1
Values of Zy, for different values of y and n.
y=1 y= y=3 y=4 y=5 y=6 y=7 y=8 y=9
n=4 594 4.44 332 2.19
n=5 594 46 3.8 2.67 1.55
n= 594 46 3.87 3.03 19 0.78
n= 594 46 3.87 3.08 22 1.07 —-0.05
n= 594 46 3.87 3.08 2.23 1.31 0.18 -0.94
n=9 594 46 3.87 3.08 223 1.33 0.37 -0.76  -1.88

(il) D(L 1) = b + e DAL+ 1. 1),
L=23,. k(*l#kmf1km m=23,..C
(iii) D(L. 1) = mLfkm—1m723 c

(iv) D(L, 1) = mhfﬁ?ﬁﬂﬂ L) + 52z DI+ 1.1,
L=kpm=23,.,C

(V) DILL—m(L)—1) = Hmu)u+;\'+",("l(’[)‘#D(L—lL—l— mlL-1)—=10)
+Hm(LmD(L+1 L-m(L+1)-1),
L=34..n-11=012 ..L—-ml) -2

(vi)D(L.H):t-]ﬁ+D(L—1,H—1),L:n,H:2,3,4,...,n—C.

When an arriving customer joins the system, the number of customers increases fromytoy +1(y=1,2,3,...n - 1).
The position H of the customer in the queue depends on the number of active servers, m, at the instant of the new arrival.
Specifically, the position of the customer is y + 1 — m. Thus, a new customer changes the system state to (y + 1,y + 1 — m),
and consequently, the mean waiting time of the customer in the queue is D(y + 1, ¥ + 1 — m). Note that all states (y + 1,
¥ + 1 — m) are arranged in the upper row in Fig. 3. Finally, the mean sojourn time of the customer in the first stage, for all
y and its corresponding m, is given by

E[Dly.n]=Dy+1.y+1-—m)+1/pu. (6)

In order to illustrate the derivation of the equilibrium threshold for MI customers, denoted by npy, we present in Table 1
values of Zyy Eq. (3)) for different values of y and n for the following numerical example: C = 2, ky = 4, A = 16, u = 20,
r =10 and hy; = 45. As n > k¢ = 4, the table begins with row n = 4. The values of Zy; in Table 1 are calculated while using
the recursive calculation given in Procedure 1 for D( e, »), and Eq. (6) for E[D|y, n]. It is shown that two values of n, n = 7
and n = 8, satisfy the conditions for an equilibrium threshold given in Eqs. (4),((5). Thus, two equilibrium thresholds are
established in that case, ny; = 7 and nyy = 8.

It is seen that for each y, the utilities are equal for all n > y + k; — 1 = y + 3. This is explained as follows: a joining
customer sees y customers in the system. Once ky — 2 customers arrive after him/her (so that the number of customers in
the system becomes y + 1 + ky — 2 =y + 3), the customer’s service rate will remain 2 until s/he starts service. Thus,
once ky — 2 new customers have arrived, the waiting time of the customer already in the queue no longer depends on the
number of additional arrivals.

3.2. Myapic social (MS) customer

For a given threshold policy n the overall rate of utility for type MS customers is given by
Zms =Therr — ME[L] (7)

Let nys be the equilibrium threshold of a type MS customer. Then, nys is calculated by maximizing Zys. Using the param-
eter values from the above example, the equilibrium threshold for a type MS customer is nys = 6. It is classically putative
that a social threshold should be lower than the individual one (see, e.g., Naor [28], and Hassin, [35]). This phenomenon is
explained by the negative externalities that a joining customer imposes on future customers, but are ignored by a customer
who maximizes his/her individual utility. In our model, however, a joining customer also imposes positive externalities on
customers already in the system, since by joining s/he increases the system'’s overall service rate. Thus, it is of interest to
investigate these two kinds of thresholds. For this purpose, we consider the values used to construct Table 1, and calculate
the equilibrium thresholds while systematically changing the value of one parameter at a time, keeping the others constant.
The results are presented in Figs. 4-7. The figures do indeed show that, in some cases, the individual threshold is lower
than the social one, i.e., nyy < nys. Fig. 4 shows that when the sojourn cost hy is relatively small, the individual thresh-
old is higher than the social threshold; but as h; increases, the individual threshold falls below the social one. Similarly,
Fig. 5 shows that the individual threshold is lower than the social one when the reward gained from the service, r, is small,
but becomes higher than the social threshold when r increases. Fig. 6 shows that the individual threshold increases slightly
with customers arrival rate, A. This result can be explained as follows: a higher arrival rate increases the overall service rate
and consequently reduces the waiting time. For small arrival rates, the social threshold is higher than the individual one. As
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Fig. 5. Social and individual thresholds as a function of r for C = 2, k; =4, A = 16, ;& = 20 and h; = 45.
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Fig. 6. Social and individual thresholds as a function of A for C = 2, k» = 4, i = 20, r = 10and h; = 45,

14 16 18 20 2 2 H

Fig. 7. Social and individual thresholds as a function of p for C =2, k2 =4, A = 16, r = 10and h; = 45.
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Table 2
Values of Zy for different values of y and n.

y=1 y=2 y=3 y=4 y=5 y=6 y=17

n=4 4926 3337 2130 0969

n=>5 4844 3332 2355 1.087 -0.129

n= 4814 3280 2347 1314 0.033 -1.179

n=7 4800 3.262 2324 1336 0.265 -1.007  —2.207

the arrival rate increases, the social threshold decreases. This is explained as follows: the higher the arrival rate, the higher
the probability that the number of customers in the system is larger than k;; this, in turn, diminishes the positive externali-
ties effect. Thus, at some value of the arrival rate, the individual threshold becomes higher than the social one. Fig. 7 shows
that the individual threshold is lower than the social threshold when the service rate, y, is small, but that it increases at a
slightly greater rate with u than the social threshold. Thus, the individual threshold is higher than the social one when the
service rate is high.

3.3. Far-sighted individual (FI) customer

In this section we derive the equilibrium threshold for far-sighted customers (i.e., those who consider the cumulative
mean sojourn time at both stages of the process) and seek to maximize their individual utility (type FI). The calculation of
the sojourn time in the first stage is the same as for a type MI customer. However, it is also required to derive, for a given
threshold n, a methodology to calculate the sojourn time in the second stage for an NAS customer who sees y customers in
the first stage. For this purpose, let p;;, i =0, 1, 2, .., n,j = 0, 1, 2, .., be the probability of j customers in the second stage
given that there are i customers in the first stage, let ¥, ;(t) be the probability that y customers are in the second stage ¢
time units from the present time, given that j customers are currently in the second stage, let E[S(t)]y] be the mean number
of customers who will occupy the second stage, given that y customers are currently in the first stage. Let §; be a column
vector with n + 1 entries, the i of which equals one, and all other entries equal zero. Then, pjji is given by

Dij Dij Di j Dij

Pili = —= === = ,i=0,1,2,..,n,j=0,1,2, .. (8)
I YEepin TP S Yo (PoR)S  poll R
According to Kleinrock [36] (p. 77) the value of ¥/, j(t) is given by
o0
Yy (0) = e~ @artBX | p=DRL(at) + p@IDRL @+ (1 —p)p? Y p R |, (9)
k=y+j+2

where (i) af is the total arrival rate at the second stage (including strategic and APP customers), the calculation of which

is described below, (i) p = a.g/B, (iii) a =28.,/p, and (iv) I, (x) = 7 (*x/2)""3j((y + v)! v 1) is Bessel function. Then,
E[S(t)]y] is given by

ESOWI= Y3 [ vy by o e (10)

y=0 j=0
where fp,(t) is a density function of a customer’s sojourn time in the first stage starting from his/her arrival until the start
of his/her service. It follows that this customer’s mean sojourn time in the second stage, for a given y and n, is given by
E[T|y.n] = (E[S(D]y]+1)/B. (11)
The calculation of «, and fp,(t) requires an involved procedure, which is given in Appendices B and C, respectively.
Now, let Zg denote the utility enjoyed by a strategic type FI customer:
Zpy =1 — WE[D]y.n] — h:E[T|y. n], (12)
where h, is a customer's sojourn cost in the second stage. The threshold, n, is an equilibrium threshold if, for that n, the
following two conditions hold:

(i) r —hE[D|y,n] — hyE[T|y.n] =0 forally < n, (13)

(ii) r — W E[D|y, n] — hyE[T|y,n] < 0 for y = n. (14)

In order to illustrate the derivation of the equilibrium threshold for a type FI customer, denoted ng, we use the example
from previous sections and add the following parameter values: 8 = 35 and h, = 25. Table 2 presents values of Zg for
different values of y and n for the above parameter values. Note that I;,(x) is calculated via hypergeometric functions, while
the calculation of E[S(t)[j] is terminated when the summation from y = 0 to ¥ = y differs from the summation up to
¥ = yo + 1 by less than 10-'°. A similar procedure is used when calculating 1y, (). It is shown that two values of n, n =5
and n = 6, satisfy the conditions for an equilibrium threshold given in Eqgs. (13),(14). Thus, two equilibrium thresholds are
established in that case, ny = 5 and nyy = 6.
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1 = r
10 11 12 13 14 15 16 17 18 19 20

Fig. 9. Social and individual thresholds as a function of hy for C =2, ko =4, A = 16, u =20, r = 10, 8 = 35 and h, = 25.

' —~
5 10 15 20

Fig. 10. Social and individual thresholds as a function of h, for C =2, k; =4, A = 16, u = 20, r = 10, hy = 45 and B = 35.

3.4. Far-sighted social (FS) customer

Type FS customers’ utility is given by
Zps :I‘lﬁf—h]E[L]—th[Sreg]. (]5)

Let ngs be the equilibrium threshold of a type FS customer. Its value is calculated by maximizing Zg. Using the parameter
values above, the equilibrium threshold is ng = 4. In line with the case of myopic customers, we wish to analyze far-sighted
customers decisions with regard to social and individual thresholds. Using the above example as a baseline case, Figs. 8-10
present the two kinds of threshold as a function of various parameter values. The Figures show that the individual threshold
is always higher than the social one.

3.5. Comparison between myopic and far-sighted customer’s utilities

A myopic customer does not take into account the sojourn costs in the second stage, and, if such a customer also max-
imizes social utility, his/her behavior will be determined by the equilibrium threshold nys. However, in reality an MS cus-
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Fig. 11. Percentage of return for an FS customer as a function of r for C =2, k; =4, . = 16, ;0 = 20, hy = 45, B = 35 and hy = 25.
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Fig. 12. Percentage of return for an FS customer as a function of hy for C=2,k, =4, L =16, n = 20,r = 10, = 35 and h, = 25.
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Fig. 13. Percentage of return for an FS customer as a function of hy for C =2, k; =4, A = 16, u = 20, r = 10, hy = 45, and B = 35.

tomer still has to spend time in the second stage, and thus his/her real utility will be affected by the sojourn costs experi-
enced at that second stage; this feature is captured by substituting the nys threshold into the Zgs utility function.

Let Zgs(nys) be the MS customer’s actual utility, and let Zgs(ngs) be the FS customer’s utility. Since ngs maximizes Zgs,
it follows that Zgs(ngs) > Zgs(nys) and that [Zgs(nps) - Zps(nys)] represents the increase in utility due to a social utility

maximiser being far-sighted. To examine the percentage increase in utility due to a far-sighted approach, we calculate:
FSyew = (23U ~ZEs(us) y 100
Zs(nys) :

Fig. 11 shows that the percentage increase in utility decreases (almost monotonically) with r, and approaches zero when

r becomes large. Fig. 12 shows that the return is small for small values of h; and then increases with h;. Fig. 13 shows that
the return is small for small values of h, and then increases monotonically.

4. The service system manager's problem

There is an implied benefit for the service system for offering customers the opportunity to complete stage 1 by APP
for three reasons: (i) it reduces the balking rate since APP customers do not balk; (ii) it reduces customers’ sojourn times,
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Table 3
Values of nys for different values of d and k;.
k=2 k=3 k=4 k=5 k=6 k=7

d=000 6 6 6 7 7 7
d=0.01 6 6 7 7 7 7
d=002 6 6 7 7 7 7
d=003 © 7 7 7 7 7
d=004 6 7 7 7 7 7
d=005 7 7 7 7 7 7
d=006 7 7 7 7 7 7
d=007 7 7 7 7 7 7
d=008 7 7 7 7 7 7
d=009 7 7 7 7 7 7
d=0.10 7 7 7 7 7 7

since APP customers skip the first service stage; and (iii) it increases the available vacation time for servers and hence their
capacity to perform other tasks. Thus, there is an incentive for managers of the system to encourage strategic customers to
use the application. To this end the manager can - and many do - set a price discount that is given only to customers who
order via the APP.

Let 6 be the manager’s mean revenue per customer (strategic or APP) and let d be the discount expressed as a fraction

w

of #. Then, for d € [0, 1] and @ > 0, let n(d) =n(1 —e" 1—%) be the arrival rate of customers who switched from strategic
to APP mode due to the discount, where 1 < A is the full potential arrival rate of customers who may be encouraged to
use the application as d — 1. Then, following the introduction of a discount, the arrival rate of strategic customers as a
function of the discount is reduced to A(d) = A — n(d), and similarly, the arrival rate of the APP customers is increased to
a(d) = o + n(d).

Regarding the management objective, the system benefits from servers’ vacations that allows them to perform other func-
tions. However, increasing the k; values has a diminishing return effect on the system revenue U(k; kj..., kc) from server

vacations. This effect is expressed by U(k,, K3, ..., kc) = a+ 251:2 ‘s}’zn”i"igﬂ) where @ is a constant representing the basic rev-

enue if k;, = m for all m, é,, is a coefficient, and the term % represents the diminishing return phenomenon. On the
other hand, increasing kpy increases customer sojourn costs. Thus, ky for m = 2, 3, ..., C, are considered as system decision
variables. Let ¢; and ¢, be the system cost-rate incurred as a result of a customer’s sojourn time in the first and second
service stage, respectively. Considering the performance measures A.g E[L] and E[S] as functions of d and k= (ky, ks, ... k),
the system’s profit function is given by

Z(d, k) = hepp(d. K)F +a(d)(1 — d)8 +U(k) — ciE[L(d, fé)] — ;E[S(d, E)]. (16)

The values of d and k;, (m = 2, 3, ..., C) affect the customers’ choice of thresholds for balking, which will differ for each
customer type. This effect should be taken into consideration by the system manager when determining the values of d and
k. Thus, the optimal solution is given by the triple {d,k, Neype(d, k)}, type e {MI, MS, FI, FS}, that maximizes Z(d, k).

Using the parameter values from the preceding section, together with 8 = 20, ¢; = 40, ¢; = 20, and §; = 35, extensive
numerical calculations result in the following optimal values:

(i) For the case where the customers are myopic and maximize individual utility (MI type) - {d = 0.04, k; = 3,
HM[(0.04,3) = 7}.
(ii) For the case where the customers are myopic and maximize social utility (MS type) - {d = 0.04, k, = 3,
HM5(0.04,3) = 7}
(iii) For the case where the customers are far-sighted and maximize individual utility (FI type) - {d = 0.04, k, = 3,
HH(0.04.3) = 6}
(iv) For the case where the customers are far-sighted and maximize social utility (FS type) - {d = 0.04, ky
nF5(0.04,3) = 4}

Il
w

It is seen that the differences between the optimal values of d, k; and n for the four customer types are confined mainly
to the level of the threshold values, n. However, since these threshold levels have a limited effect on the optimal value of
Z(d, k), the system'’s profit is only minorly affected (as it is comparatively insensitive to the optimal discount fraction d, and
the server's vacation policy ko). Thus, we present the calculation of optimal Z(d, k) for the case where all customers are of
type MS (see Tables 3 and 4), and the calculations for other customer types are performed in the same manner with slightly
different values of Z(d, k). Table 3 gives the values of the MS customer’s equilibrium threshold, nys, for different values of
d and ky. Table 4 shows the values of the system’s profit, Zys, for the same values of d and k, using the values of nys
corresponding to each combination of d and k;. Table 4 shows that the optimal value of Z(d, k) is achieved when d = 0.04
and k; = 3 (indicated in bold) and its corresponding customer equilibrium threshold is nys = 7 as presented in Table 3.

Table 5 gives the values of the MI customer’s equilibrium threshold, npy, for different values of d and k,. It is seen
that npy decreases with k,, unlike the findings in Table 3 for an MS customer, where nys increases with k. This result
can be explained as follows: an increase in ky results in a lower total service rate, which decreases the social reward. To

368



G. Hanukov and U. Yechiali Applied Mathematical Modelling 105 (2022) 355-374

Table 4
Values of Zys for different values of d and k.

ks =2 k=3 k=4 k=5 k= ky =

d=000 39839 403.13 39646 38798 379.04 370.09
d=001 401.04 407.28 4028 396.55  390.59  384.96
d=002 40216 40968 40686 40263 39863 39518
d=003 40217 41075 409.25 40646  403.92  401.89
d=004 40134 41078 41033 408,62 40710 406.00
d=005 39988 410.03 41039 409.49 408.68  408.18
d=006 39795 408.67 409.67 40936  409.06  408.95
d=007 39566 406.84 40833 40847 40853  408.69
d=008 39310 40466 40653 407.00 40731 407.66
d=009 39035 402.19 40437 40509 40559  406.06
d=010 38745 39953 40194 40285 40349 404.05

Table 5
Values of nyy for different values of d and k.
kz=2 k=3 k=4 Ik =5

d=000 8 8 7,8 7
d = 0.01 8 8 7,8 6
d=002 8 8 7 6
d=003 8 8 7 6
d=004 8 8 7 6
d=005 8 8 7 6
d=006 8 8 7 6
d=007 8 8 7 5
d=008 8 8 7 5
d=009 8 8 7 5
d=010 8 8 7 5

compensate for this reduction in total service rate, more social customers join the queue (1 increases), which causes the
total service rate to increase. However, MI type customers aim to maximize only their individual reward; thus an increase
in mean sojourn time encourages them to balk (npy decreases). A similar effect occurs in relation to variations in d. Thus,
in Table 3 npyg increases with d, whereas in Table 5 nyy decreases with d. This phenomenon is explained as follows: an
increase in d causes a decrease in customer arrival rate to the first stage, which in turn decreases the total service rate
and increases the customers’ mean sojourn time. Thus, for the reasons set out above, nys increases for social customers,
in order to compensate for the reduction in the total service rate, while ny; decreases for MI customers due to the higher
mean sojourn time and balking rates.

5. Conclusions and managerial implications

The strategic behavior of two types of customers (strategic and APP users) is studied in a two-stage service system in
which servers conducting the first stage may take temporal 'vacation’, depending on the actual queue size. Unlike strategic
customers, APP customers can skip the first service-stage and join the second-stage queue directly. On the other hand,
strategic customers who decide to join rather than to balk, have to pass sequentially through both service stages and incur
waiting-time losses in both queues. Since a greater number of servers go on vacation when the first-stage queue size is
small, we show that, contrary to Naor's well-known finding, the threshold of social customers is not always lower than
the corresponding threshold of individual customers. Furthermore, there can be more than one equilibrium threshold for
joining in the case of individual customers. Regarding the overall operation of the service station, offering a price discount
to potential APP users may increase the service system manager’s profit, reduce customers sojourn times, reduce the queue
size in the first service-stage, and reduce the number of servers required to operate at that stage. A possible extension of
the model is to assume that first-stage vacationing servers may dynamically (queue size dependent) join the second-stage
team of servers to increase the latter's service rate.

We note that the analysis is for Markovian systems, which allow the use of a matrix geometric analysis. If the service
times are general rather than Markovian, the analysis will become significantly more complex and elaborate.

Yet, the results of the analysis clearly indicate that the introduction of electronic ordering devices is beneficial for all
customers — regular and app users — as well as for the facility management. It implies that it is beneficial for the man-
agement to invest in encouraging customers to order via apps. We propose the use of a price discount as a tool for that
encouragement, and develop a scheme to obtain the optimal discount level which can be easily implemented. The results
further imply that additional encouraging tools should be considered (e.g., offering discount points) to improve overall ef-
ficiency. Furthermore, it is shown that shifting servers to perform ancillary duties can increase the facility profit (although
it may increase customers waiting time). From customers perspective, the waiting time increase from being myopic may be
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small in certain occasions. We emphasize the interesting result that is that in some cases, social equilibrium is higher than
the individual one. This raises a controversial question: should a toll be imposed on balking customers (in order to increase
the optimal individual joining threshold)?

Appendix A
Let
—A s 0] 0 0 0
wo —(k+p) A 0 0 0
0 w —(A 4 )
: . . s 0 0
A=Ag+A +Ay=| 0 0 —(h+ ) A 0
0 0 0 2 —(A+2) :
0 0 0 0 21 0
: : : . A
0 0 0 ... 0 0 —(A+Cp)
According to Neuts [29], the system’s stability condition is
TApn1 < TA2En1, (A1)
where T = (7Tg, 7Ty, ..., Ty Ty 1+ - Tgs g 15 > ks ke 15 -+ 7n) 18 the unique solution of the linear system
TA =10, (A.2)
T €1 =1 (A3)
Without loss of generality, set kg = 0. Then, by applying Eq. (A.1), we get Z,ano Zg’g{l (et + mp)m; < fB, implying that
C km+l*1
@+ D omm<f (A4)
m=1 i=kp
We first calculate 7;, i = 0, 1, 2, ..., n, by solving the set of Eqs. (A.2),(A.3). The set (A.2) can be written as

Amg— T =0

)\.T(f,] - ()\. +H,)JT;' + UTTi = 0i=12,.. kz -2

AT — A+ )T +2umi =0 i=ky —1

ATy — A+ 2T+ 20wy =0 i=ky, ky +1, .., ks — 2
AT — A+ 2T+ 3umi =0 i=ky —1

AT — (A3 +3umi =0 i=ka,ks+1,.... kg —2

: (A.5)
AT — A+ (m—-1))mi+mumi =0 i=kp—1
AT — (A +mu)m+mumig =0 i=kp km+ 1. .. kppr —2
AT — (A +(C— ])/J,)]Tf +Cumi1=0 i= ke —1
)\.Ti'f_] — ()\. +C,DL)JT!' +C,U.7Tf+] =0 i= kc, k(‘ +1,..,n
Let & = ﬁ Rearranging the terms in (A.5) leads to
m =§&'mg i=1,2,... k-1
Hi:%vﬂo l‘:kz‘k2+]‘....k37]
i = 5565757700 i:k;.k3+1,...,k4—ll (A6)
T[i‘:%ﬂ'o f:’(c,k('#»],m,n
Cikct1 m akar1ka
a=1
Without loss of generality set kg, 1 — 1 = n. Then (A.6) can be written as
i
T = § 7o m=1,2,....C i=kp. ky +1, ..., kmy1 — 1. (A7)

a I‘ni*km+1 Hgl;] aka+1 —ka
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Substituting (A.7) into (A.3) results in

C kmsi—1 é_-,'
m|1+). Y — - =1. (A.8)
—l i mi—km+1 Hg‘:] akai1—ka
_ £ ; ; C 1 kmy1—1 £
Let pm = 3. Rearranging the terms in (A.8) we get mo(1+ 3 4 W Zlm‘-:m ),1 which leads to
k,
km—1 m+1_ Kkm
mo(1+ Yoy l_[m,nfﬂrzm_ka (o _=fu)) =1, or
a=1
K1 I k -
km— m+1 m
mo={1+ Z Pn_—Pm )} (A9)
m=1 ﬂ aku+l —ka pm - l
By substituting (A.9) into (A.7), m;, 1 =0, 1, 2, .., n, are calculated.

We are now ready to obtain the desired stability condition. By substituting (A.7) into (A.4) we get
o+ 35 12 ”',:'": m : < B, which leads to

mf—km+1 ]‘[L"_’ll akay1-Ka

mkm pf"nrnﬂ _ p,’;’m
‘ A10
a+m; ?lakm_h( o) (A10)

Finally, substituting (A.9) into (A.10) leads to
-1

lr‘mﬂ km ki 1 erH km

Pm — )Om mm Pm — Pm
o+ 1+ <p.
’umzl a ak““_k( Pm = ) Z ( Pm—1 ) §

akuﬂ —kq

Appendix B

Let ®; be the number of customers who pass from the first stage to the second stage in the interval between the
customer’s arrival and his/her service beginning at stage 1. Let ®; be the number of customers who pass from the first
stage to the second stage while a customer is being served. Let q; y be the probability that an NAS customer who sees y
customers in the system will visit state (I, H) before entering the service. Each q; y for each L and H can be recursively
calculated by the following procedure.

Procedure 2. Calculation of g; ; for each L and H.

dr-mp=0L=y+2,y+3,.
dr-mm=LL=y+1

1
AL 1-mw) = dL+1,141 m(L+1)ﬁ L=23 ..y

m(L+1
(V) G1, L—m ()—1 = QL1 141 -m 1+1)— Iﬁ 1. 1-m-1)- 1m

L=3,4..n—21=12 ..L-mlL) -1

(V) Gr tom )-1 = Q141 141 -m @+ 1)1 F D01, Lom (=0~ (D
Len—11=12 .l —ml) -1

(V) 4p 1—m @)1 = Qi-1,1- m(L—l)—Im- L=nl=12.,L-mlL) -1

(vii) ng_qHHﬁ [=12 i —2%kn—Lkmm=12 ..,C

1+1
(viii) QLO*qLHl% O g L= kmm =12, C

(iX)qo=q +1,1.L=n-1

(iii

i)
if)
)
)

A customer reaches the service station only after all y customers present in the queue upon his/her arrival have started
their service. However, not all of those y customers will have completed their first stage service and passed to the second
stage when s/he starts service. Specifically, assuming that when a customer starts his/her service, there are m active servers,
only ¥y — m + 1 customers will have passed to the second stage by that time. Thus, the mean number of customers who
will have passed from first stage to the second in the interval between the customer’s arrival to the queue and their start
of service is given by

n
©1= Y (y—ml)+Daro.
I=1
L#kp—1.¥m
During the time a customer is served, s/he occupies exactly one server, while the rest of the servers can serve other

customers. Given that one server is occupied and at least ky; — 2 customers are present, in addition to our customer, the
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system can be described as a parallel system where ' = C — 1 and n’ = n — k; + 2. When, in the parallel system,k; — 2
customers are present, the system is idle (analogous to 0 customers in the regular system); with k; — 1 customers in a
parallel system, there is 1 customer in the regular system, etc. Since this parallel system can be idle during the time the
customer obtains service, the passing rate from the first stage to the second during this time is A/, and thus the number
of customers who pass from the first stage to the second stage during the time the customer is in the service is given by

}L’ejf/luv
Suppose that, when a customer starts service, i < ky — 2 customers are present in the system. In such a case, if the
customer’s service is completed before k; — 2 — i customers have arrived, then zero customers will have proceeded to the

second stage during the customer's service. However, if k; — 2 — i customers join the system before the customer's service
completion, with probability (,\A )k2=2-1 the system starts acting like the parallel system described above. Similarly, if,
when a customer starts service, i > ky — 2 customers are present, the system immediately starts acting like a parallel
system. The probability that, when the customer starts service, i customers are present in the system is q; . 1, g. Thus, the
number of customers passing to the second stage during the service is

ky—3 A ky—2—i n—2

> Qi+l‘0() + Y Gisro |Repp/it

i=0 At p i=k;—1

The above is the probability that the parallel system will be activated multiplied by the number of passing customers

in that case. Note that the probability dk,~1.0 does not exist (see Procedure 2), and thus the probability of k; — 1 other
customers being present in the system by the time the customer starts service is zero. Then, the total number of customers
who pass from the first stage to the second stage in the interval between a customer’s arrival at the stage 1 queue and their
completion of the stage 1 service is ®@; + ®,, and the passing rate during this time is (©1 + ©3)/E[D|yn]. Finally, oo is
given by

O + 0,

Ceff =0 + ——=.
off E[D]y.n]

Appendix C: Laplace-Stieltjes transforms

Let 5(){) = &5 and let 5LH be the Laplace Stieltjes transform (LST) of a customer’s waiting time in the first stage, starting

from state (L, H), until s/he starts service. Each ﬁLH. for all L and H, can be recursively calculated by the following procedure:
Procedure 3. Calculation of EL yfor all L and H.

4 =D(Cp), L=ke+1,ke+2,...n

_n A n (L)

1 =D +m(L)p)( WDLHJ + ,-L_Tm(f;y -1),

2.3 ke~ 14 kn — Lkmm=273.,C

(iii) L]fD(AerL),u,)Lfkm—]mfZS ., C

(iv) Dpq =D +m(L)u)( mDL 1.1+ ,Hrm(L)#DLH 1)
L—km,m—z 3,..C

(V) Dpi_my- 1*D(A+m Lype)( A+m(L)#DL Ll-1-m(~1)—1 l+m(L)MDL+1L mLe1)—1)s
L=34..n-11=012 ..[—mL -2

(vi) Dip = DCi)Dp 1 L=m H=2 34 ..n—C

—

o= pepz

(i)

I

Thus, the LST of a waiting time of a newly arriving customer who sees y customers in the first stage is 5y+']_y+‘l,m (see
the explanation under Procedure 1). Then, the LST of the customer’s sojourn time is given by

D‘y - Dy+1,y+1—mD(,u),
and finally, the fp,(t) is calculated as inverse of 5|y.

Appendix D: Notation

n - customer’s joining threshold

A — arrival rate of strategic customers at the first service stage

o« - arrival rate of APP customers at the second service stage

C - maximal number of servers in the first stage
km — a pre-specified number such that when the first-stage queue size drops below it, server no. m takes

a vacation.

J4 — service rate in the first stage

B - service rate in the second stage

L - number of customers in the first stage in steady state

S - number of customers in the second stage in steady state
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pij=Pr(l=1 S=]j) -
ElL] -

E[s™eg] -

E[S%P] -

E[D] -
E[T™8] -

E[W] = E[D] + E[T™8] -
E[V] -
Iefy =

MI -
MS -

FI -
FS -
Nyr —
Nps -
ng —
Nfs —
Zyp -
Zys -
Zg -
Zps —

h] =

’12 -

V-

E[Dly, n] -
H -

m(L) -
D(L, H) -

pser -
E[S]i] -
E[s(olil -
E[Tly. n] -
Wylj(t) -
fop(t) -
eff —

rmg ~

d—
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steady state probabilities where i =0,1,2,..,n,j=0,1, 2, ...

mean number of customers in the first stage (note that all customers in the first stage are strategic)
mean number of 'regular’ (namely strategic) customers in the second stage

mean number of APP customers in the second stage, E[S] = E[S™] + E[S*PP] = mean total number
of customers in the second stage

mean sojourn time of a strategic customer in the first stage

mean sojourn time of a strategic customer in the second stage

E[T%PP] - mean sojourn time of an APP customer in the second stage

total mean sojourn time in the system (in both stages) of a strategic customer

mean number of servers on vacation

effective arrival rate of strategic customers type

myopic strategic customer who maximizes individual utility type

myopic strategic customer who maximizes social utility type

far-sighted strategic customer who maximizes individual utility type

far-sighted strategic customer who maximizes social utility

equilibrium threshold exercised by type MI customers

equilibrium threshold exercised by type MS customers

equilibrium threshold exercised by type FI customers

equilibrium threshold exercised by type FS customers

utility of type MI customer

utility of type MS customer

utility of type FI customer

utility of type FS customer

reward gained by a customer from obtaining service

sojourn cost rate of a customer in the first stage

sojourn cost rate of a customer in the second stage

number of customers that an NAS customer sees in the first stage

mean sojourn time in the first stage of an NAS customer who sees y customers in the first stage
when the threshold is n

position of the customer in the first stage queue

number of active servers corresponding to a given L, based on the servers vacation policy

mean total waiting time of a customer starting from state (I, H) until the start of his/her service
probability of a customer to obtain service

mean number of customers in the second stage given that there are i customers in the first stage
1=012..,n

mean number of customers who will occupy the second stage t time units from the present time,
given that j customers are currently in the second stage

mean sojourn time in the second stage of a customer who sees y customers in the first stage, for a
given, already known, threshold n

probability that there will be y customers in the second stage ¢ time units from the present time,
given that j customers are currently in the second stage

density function of the customer’s sojourn time in the first stage starting from his/her arrival until
the start of his/her service

overall arrival rate at the second stage (including strategic and APP customers)

percentage increase in monetary utility caused by an FS customer

mean revenue received by the management per customer (strategic or APP)

discount fraction on 6 for APP customers

arrival rate of customers who switched from strategic to APP customers due to the discount d
arrival rate of strategic customers given the discount offer d

arrival rate of APP customers given the discount offer d

system revenue associated with the work done by servers on vacation under policy {kp}

system’s cost-rate incurred as a result of a customer’s sojourn time in the first service-stage
system’s cost-rate incurred as a result of a customer’s sojourn time in the second service-stage
system profit for policy k = (ka, k3. ..., kc)

number of customers who pass from the first stage to the second stage from the moment a cus-
tomer arrives until s/he begins to receive first-stage service

number of customers who pass from the first stage to the second stage during the time a customer
is receiving first stage service

probability that an NAS customer who sees y customers in the first stage will visit the state (L, H)
before starting service.
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